it ‘Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-00),
pages 63-71, Stanford, California, June 2000

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

. R

[

Utilities as Random Variables: Density Estimation and Structure Discovery

Urszula Chajewska
Computer Science Department
Stanford University
Stanford, CA 94305-9010
urszula@cs.stanford.edu

Abstract

Decision theory does not traditionally include uncer-
tainty over utility functions. We argue that the a per-
son’s utility value for a given outcome can be treated
as we treat other domain attributes: as a random vari-
able with a density function over its possible values.
We show that we can apply statistical density estima-
tion techniques to learn such a density function from a
database of partially elicited utility functions. In par-
ticular, we define a Bayesian learning framework for
this problem, assuming the distribution over utilities
is a mixture of Gaussians, where the mixture compo-
nents represent statistically coherent subpopulations.
We can also extend our techniques to the problem of
discovering generalized additivity structure in the util-
ity functions in the population. We define a Bayesian
model selection criterion for utility function structure
and a search procedure over structures. The factoriza-
tion of the utilities in the learned model, and the gen-
eralization obtained from density estimation, allows us
to provide robust estimates of utilities using a signif-
icantly smaller number of utility elicitation questions.
We experiment with our technique on synthetic utility
data and on a real database of utility functions in the
domain of prenatal diagnosis.

1 Introduction

The principle of maximizing expected utility has long been
established as the guide to making rational decisions [21].
It rests on two components: probabilities for representing
our uncertainty about the situation, and utilities for repre-
senting our preferences.

Traditional decision theory ignores, however, any uncer-
tainty we may have about the utilities of a given user. To
apply it, we need to acquire the entire utility function. We
cannot use any prior knowledge, either in the form of ex-
perience with other users or in the form of constraints. By
treating utilities as random variables, we can utilize tools
that have been used with great success when reasoning
about events in decision problems. For example, we can
use value of information to decide whether a utility elicita-
tion question is worth asking [4].

Before we can apply these tools, however, we need to
address the issue of acquiring distributions over utilities.

Daphne Koller
Computer Science Department
Stanford University
Stanford, CA 94305-9010
koller@cs.stanford.edu

The problem of model acquisition is well-understood in the
context of probabilistic models, with a significant body of
work both on eliciting models from experts and on learning
from sample data. By contrast, the problem of acquiring
utility functions is not understood nearly as well. In some
sense, utility elicitation is innately harder. There are no ex-
perts to ask about the model; every person’s utility function
may be different. Thus, in the traditional approach, each in-
dividual’s utility for each of the possible outcomes must be
elicited. In domains involving more than a few outcomes,
this elicitation process is time consuming and cognitively
difficult. It is also noisy and prone to errors [15].

The use of structure is crucial for probabilities, simpli-
fying both the model and the associated knowledge acqui-
sition process. Structure also exists in utilities. Utility
functions can often be decomposed as a linear combination
of subutility functions, each of which involves only a few
of the relevant variables. Decomposable utility functions
can be used to support more efficient inference [14, 20].
In principle, as they require fewer parameters to be speci-
fied, they should also ease the knowledge acquisition pro-
cess [15].

In practice, however, we see that decomposable util-
ity functions are rarely used. (Except in certain settings
where everything easily reduces to a common basis, such
as money.) The problem is that the structure in utility func-
tions seems elusive, perhaps because there is little method-
ology for discovering it. Several papers [9, 17] have tried
to detect simple additive decompositions in a database of
elicited utility functions using linear regression; unfortu-
nately, additive structure rarely seems to exist in these
databases, so one typically resorts back to explicit utility
elicitation for the entire outcome space. We know of no
attempts to learn more complex utility functions from data.
Alternatively, one could ask specific individuals about their
decomposition. However, this approach is difficult to im-
plement. Unlike probabilities, utilities cannot be marginal-
ized. The utility of a specific instantiation of one state at-
tribute does not have any intuitive meaning and cannot be
assessed without making some assumptions about the val-
ues of other attributes. Thus, the decomposition of utility

20030013 (122

b

functions is much less intuitive for people to understand
than the decomposition of probability functions.

In this paper, we take a much more general approach to
the problem of discovering the structure of utility functions.
We assume that we have access to a database of (partially)
elicited utility functions for some set of individuals. This
assumption is not unreasonable: many medical informatics
centers collect large databases of utility functions for var-
ious decision problems or for cost-benefit analyses of new
treatments [10, 18]. Given such a database, we apply statis-
tical learning techniques to discover a decomposition that
fits the data well. More specifically, we postulate a model
where the population is comprised of several statistically
coherent subpopulations, or clusters. The utility functions
in each cluster are assumed to be decomposed in some way,
and the parameters of the subutilities are assumed to come
from a Gaussian distribution. Note that we do not assume
that any of these model parameters are known. We do not
know which person belongs to which cluster, or even which
decomposition is used in the different clusters. Rather, we
are given only a standard database of fully explicit utility
functions (where some of the values may be missing).

Our approach allows us to learn substantially more ex-
pressive models than the naive linear regression approach,
and thereby discovers structures that are invisible to lin-
ear regression. Furthermore, the model produced by our
learning algorithm can be used to make the utility elicita-
tion process more robust and easier for the user.

2 Factored Utility Functions

The naive representation of a utility function is a vector of
real numbers, ascribing a utility to each possible outcome.
This representation is quite reasonable in domains involv-
ing a small number of distinct outcomes. Many real-life
domains, however, involve fairly complex outcomes. Con-
sider, for example, the domain of prenatal testing. Prenatal
testing is intended to diagnose the presence of a chromo-
somal abnormality such as Down’s syndrome in the early
weeks of pregnancy, an event whose probability increases
with maternal age. The two tests currently available to
diagnose it, chorionic villus sampling (CVS) and amnio-
centesis (AMNIO), carry a significant risk of miscarriage
above the baseline rate. The risk is higher for CVS, but it
is more accurate and can be performed earlier in the preg-
nancy. Both miscarriage and elective termination of the
pregnancy may reduce the chances of future pregnancy. In
this domain, a typical outcome is “healthy fetus, early test
(CVS), accurate test result, procedure-related miscarriage,
no future pregnancy”.

In such cases, it is convenient to describe the space of
outcomes as the set of possible assignments of values to
a set of relevant variables. Here, we have five utility at-
tributes: testing T (none, CVS or amniocentesis), fetus’s
status D (normal, affected by Down’s syndrome), possible
loss of pregnancy L (no loss, miscarriage, elective termi-

nation), knowledge of the fetus’s status K (none, accurate,
inaccurate), and future successful pregnancy F (true, false).
The utility is a function of all of these values. In general,
we define each outcome as an assignment to a set of at-
tribute variables X = {Xj,... ,Xn}. Each variable X; has a
domain Dom(X;) of two or more elements.

Clearly, the number of outcomes is exponential in the
number of attributes. Thus, the specification of the util-
ity function in full can become expensive. In many med-
ical domains, there are tens of outcomes. In our domain,
there are 108 distinct outcomes; even after simplification
and elimination of very unlikely outcomes, 66 outcomes
remain. Ultility elicitation, which in the best of cases is a
long and tiring process, is extremely difficult for outcome
spaces of this size.!

In many cases, however, the utility function is not a
single amorphous function over the space of outcomes.
Rather, it exhibits some structure. One particularly impor-
tant subclass of utility functions are those that decompose
into components associated with smaller sets of attributes.
For example, in a vacation planning domain, we might be
able to construct our overall utility as a sum of functions
associated with the cost of the vacation, with the weather
in our destination, with the quality of the accommodations,
etc. This type of decomposition lies at the heart of multi-
attribute utility theory [15].

Definition 2.1: Let C be a set of clusters of variables
Cy,...,C,. We say that a utility function is factored ac-
cording to C if there exist functions u; : Dom(C;) — R
(i=1,...,r) such that u(x) = 3, u;(c;) where c; is the as-
signment to the variables in C; in x. We call the functions
u; subutility functions. |

The factorization of the utility function induces observ-
able patterns for the utilities of related outcomes. Some of
these cases have received a lot of attention in the literature.
For example, if the clusters are disjoint, then the change
in the utility resulting from changing the assignment to the
variables in one cluster does not depend on the assignments
to the variables in the other clusters. In this case, the util-
ity function is said to be additive over C. The intuitive
behavior induced by additive utility functions makes them
relatively easy to describe to a user and to test for during
the process of utility elicitation.

A related concept is that of conditionally additive utility
functions. Let Y,Z,V be a disjoint partition of X. We say
that Y and V are conditionally additively independent given
Z if, for any fixed value z of Z, we have that Y and V
are additively independent in the utility function u(Y,V,z).
This type of decomposition is also relatively easy to test for,
and hence is usable.

UIn this prenatal testing domain, the speed of utility elicita-
tion was around 10 outcomes per hour [16). We were also told
by several utility elicitation practitioners that the probability of
inconsistent answers rises sharply after the first few questions as
the fatigue grows.

However, the definition of factored utility functions cov-
ers many more cases than these special cases. Consider,
for example, a set of clusters C consisting of the three clus-
ters {A,B}, {B,C}, {C,A}. As pointed out by Bacchus and
Grove [1}], a utility function that factorizes in this way does
not have any of the commonly defined additive indepen-
dence properties. They call such models generalized addi-
tively independent. They continue to say that, while utility
functions that factorize in this way may well be useful in
practice, their lack of intuitive semantics makes them hard
to incorporate into a utility elicitation process.

Factored utility functions can be incorporated very nat-
urally into influence diagrams [13]. Moreover, a factored
utility function can be exploited by standard clique tree in-
ference algorithms to make decision making more efficient,
in much the same way as factored probability distributions
are exploited in Bayesian network inference [14, 20].

Factored utilities admit a representation in terms of
subutility functions over a much smaller domain. They can
therefore be specified using a much smaller set of param-
eters. However, there are many slightly different ways to
parameterize a factored utility function over C. We choose
one that will allow us to make our learning algorithm more
efficient.

Definition 2.2: We say that two functions k,h’' over some
domain Q are orthogonal if ¥ ycq h(0) - K () =0.11

Our goal will be to construct a fixed basis h¢ of orthog-
onal functions, and represent a factored utility function u
over C as a linear combination of the functions in this basis.
The coefficients w of the different basis functions would be
the parameters specifying u. The orthogonality property
will allow us to perform the computation described in the
subsequent sections more efficiently.

The atomic units in the construction of our basis are the
basis functions that depend only on a single variable. For
each variable X with values xi,...,x;, we define a set of k
basis functions ¥,...,hX : Dom(X) — R. Our construc-
tion is such that:

o KX =1,ie, K (x) =1foralli;
o the i functions are pairwise orthogonal.
For a binary-valued attribute B, we simply define:
) =
R(x2) = -1

For a three-valued attribute C, we define:

Km) = 1 W) = 1
hg(xl) = 0 hg(n) = =
) = -1 | Ke) = 1

In general, we can define a set #H[X] of orthogonal ba-
sis functions for any k-ary variable X. Note that, as the
functions are orthogonal, they span the space of all possi-
ble functions over X. In other words, for every function

u : X — R, there exist coefficients wy,...,w; such that
u= 2f=1 Wih?{ .

We now use these basic building blocks to construct an
orthogonal basis for functions over the entire set of out-
comes. With a slight abuse of notation, we will view a
function kY as a function over Dom(V). Let o be an out-
come; recall that o defines a value X|[o] for each variable
X € V. We simply define k¥ (0) = kX (X [0]).

We can now define a basis for a cluster of variables C
as the set of all functions that are composed as products of
basis functions for the individual variables in c:

H[C = {J] ¥* : ¥ € #X]}.

XeC

Proposition 2.3: The functions in H[C] are pairwise or-
thogonal, and the set H|C] exactly spans the set of all pos-
sible functions over C.

By taking the union of the bases for the appropriate clus-
ters, we can span any set of factored utility functions.

Corollary 2.4: Let C be a set of clusters. The set of func-
tions H|[C] = Ucec H|[C] spans the set of all factored utility
Sfunctions over C.

We can therefore parameterize any factored utility func-
tion over C using a set of coefficients w;, one for every
function in #[C]. How many parameters are required?
For each cluster C, we have |Dom(C)| functions in #[C].
However, the bases for the different clusters are not dis-
joint.

Example 2.5: Assume that our clusters are {A},{B,C}
and {C,D}, and that all of our variables are ternary. We
have 3 functions in #H[A], and 9 in each of H[{B,C}] and
H[{C,D}]. However, the h; (all 1) function is common to
all clusters, and the three h¢ functions are common to the
two clusters that contain C. Of course, we must be careful
not to undercount by doublecounting the overlap: ; is also
among the three functions in H[C]. A careful count reveals
that the total number of distinct functions in our basis is
349+9-3-1-1+1=17.1

In general, we can compute the total number of distinct
functions in our basis by a simple inclusion-exclusion for-
mula, keeping in mind that the overlap between the bases
for two clusters C and C' is precisely the basis for CNC’
(taking #[0] to be the single vector hy):

1#[c]l = YIH[C]- Y IH[C;, uCy)|
i i1y

+ Y A€y UC,UCs]| — -

iyFir#is

Thus, the total number of basis functions, and thereby of
parameters required, grows (at most) linearly with the num-
ber of clusters and exponentially with the size of each one.

3 The Basic Framework

Our approach relies on a few basic assumptions about the
population of users whose utility we are trying to model.
The first assumption is that the population is composed of
several disjoint subpopulations, or types (which we model
using a random variable T), where the utility functions of
the individuals of each type are statistically similar. Each
subpopulation may utilize a different factorization G, of the
utility function. Thus, every individual is associated with a
vector W, of dimension m, = |H[G]|, where each w ; is the
coefficient of the jjth basis function h; € #[G]. The vector
w;[j] represents the user’s subutility functions.

We represent a probabilistic model over utilities by
defining a vector random variable W,. For each value ¢
of T, P(W, | t) is a multivariate Gaussian with mean vector
#; and covariance matrix %,. We assume that individuals
in the population are IID samples from the P({W,}, | T)
distribution.

An individual’s subutility vector w, defines a complete
utility function, which specifies a utility for each of the
n = [Dom(X)| outcomes 0. We can define this implicit
utility function using a simple matrix operation. Let A, be
the n X m, matrix (ai;) where aj; = hj(o;) for o; the ith
possible outcome. Then, the user’s utility function ought
to be u* = A,w,. However, the utility elicitation process
can be quite noisy. We accommodate for that by assuming
that the user’s actual utility vector u is modified by some
white noise, i.e., for each o, we have that u,, is u}, plus some
random white noise € sampled from a zero-mean Gaus-
sian distribution with some variance 62. More formally, we
have a vector random variable U of dimension r, which is
a linear Gaussian whose mean is A; W, and whose variance
is 621 where I is the unit matrix.

Note that, for each type ¢, the distribution over W,, U is
a simple multivariate Gaussian, defined using a Gaussian
distribution over W, and a conditional linear Gaussian for
U given W,. However, the distribution as a whole is not
exactly a mixture of linear Gaussians, as the dimension of
the vector w, varies for the different types.

A model such as this can be used for several purposes.
The most basic use is to compute the most probable fac-
tored utility function for a given user. More precisely, as-
sume we are given a vector u representing the full utility
function elicited from a certain user. Our goal is to compute
the type f and vector w, such that the probability P(w, | u,?)
is maximized. We perform a separate computation for each
t.

From the definition of our generative model, we have
that: P(w, |u,t) = ﬂ!l:_z%ﬂlﬁl. The denominator is a con-
stant, so it does not affect the choice of maximum. Fur-
thermore, the individual components U, of the vector vari-
able U are conditionally independent given W,, so that our
goal is to maximize ([1,P(u, | W,)) - P(W, | 1). Max-
imizing this function is equivalent to minimizing an er-
ror function corresponding to its negative logarithm [2]:

—ZoInP(uy | W) —InP(w, | t). The first term in our er-
ror function (for the given vector u) can be simplified to

I
T2a2 ;((At)owt —up)? +nlno, + g In(2n) (1)

where (A,), is the row of the matrix A, that corresponds to
the outcome o. Simplifying — InP(w, | 1), we get:

: 1 1 _
m?ln(Zn)+ SIIZ+ S (We -) 5 (W —p). @)

If we put together (1) and (2), and eliminate terms that do
not depend on w,, we get as our final error function:

E(w;)

1 1 _
707 Y (A(0)w, — o) + 2 (W)T (W~)
t o
1 1
= 357 llArw, —u]? + 5”31“’1 ~Bu|?
¢

where B] B; = ;"' (We are guaranteed that such a decom-
position exists because the covariance matrix of a Gaussian
is guaranteed to be positive definite.)

Thus, maximizing the posterior probability of the vec-
tor w; is equivalent to minimizing a squared-error function.
Let D; be the (n+4-m,) x m, matrix obtained by concatenat-
ing the matrices olIA, and B;. We also define a vector u’ of

length n + m, defined by concatenating g;u and B p,.

Note that we designed the matrix A, to guarantee that
the columns of D, are linearly independent. Thus, we can
compute the optimal solution to the least-squares problem
by projection [19]:

W, = (DI'D) DI

1 e
(——GZA,TA,-%-E, =Dl
t

The matrix (5ATA, +27')~'D7 does not depend on u,
and can therefore be computed once and reused for every
individual for whom we want to estimate w,.

This computation gives us, for each type 7, the most
likely vector w, for the user given that he is in class 7. We
can now easily compute the most likely pair (¢, w,) for this
user.

This model can also be used to give us more informa-
tion. Recall that the conditional distribution on W,,U is
a multivariate Gaussian distribution. At the cost of a lit-
tle more work, we can compute the entire posterior distri-
bution P(W, | u,t). The result would also be a Gaussian
distribution, over the variables W,. The mean of this distri-
bution would be precisely the vector W, computed above.
The covariance matrix of the distribution could be used as
an indicator for how confident we are in our estimate W,.
Clearly, there are situations where this information can be
quite important, but it is not clear that it is always worth the
computational overhead. On the other hand, unlike projec-
tion, this technique can be used even if some of the values
in the original utility vector are missing.

4 Model Learning

In the previous section, we defined a statistical model of
utilities in a population of users, and showed how it can be
used to compute a factorization of an elicited utility func-
tion. We now move to tackling the problem of acquiring
such a statistical model.

Our goal is to acquire this model from a database of util-
ity functions elicited from a random population of users.
Even if the utility function is factored, the utility elicitation
process is typically done in terms of utilities of full out-
comes. This is certainly the case if, as we assumed, the
factorization of the utility function is unknown in advance.
Thus, we assume that the training data we are given is a set
of utility vectors u[j], one for each individual. We assume
that some of the components of the utility vectors may be
missing. The type variable T and the corresponding de-
composed utility vector W, are unobserved in the training
data.

Our key subroutine is the parameter estimation task for
a given model. While we cannot use full Bayesian esti-
mation in the presence of partially observable data, it will
nevertheless be useful to view the model parameters as hav-
ing a prior and a posterior. This perspective will be useful
both for smoothing our numerical estimates and to provide
the appropriate bias for the structure selection task.

Suppose that, for every value ¢ of the variable T, we have
an m, dimensional multivariate Gaussian with an unknown
mean vector g, and an unknown covariance matrix Z,. An
appropriate conjugate prior over g, and Z; is the Normal-
Wishart [7]. We use a Normal-Wishart prior for the pa-
rameters of each of the type-specific Gaussian distributions
over W, (one for each type ¢) and for the parameters of the
conditional Gaussian over the U, given U*(0) = A;(0)W;.
We assume that the parameters 0; representing the prior
probability P(T =t) are distributed with a Dirichlet dis-
tribution.

The main problem is that our data is only partially ob-
servable, rendering full Bayesian estimation infeasible. We
therefore resort to finding the MAP parameter estimate
using the expectation-maximization (EM) algorithm [8].
More precisely, we use our parameter prior to define a
Gaussian prior distribution over W;,U. For each instance
Jj and each type ¢, we condition this distribution on u[j,
and obtain a Gaussian posterior P(W,[j] | ¢,u[j]). We use
these Gaussian distributions to compute expected sufficient
statistics: the expected empirical means and expected em-
pirical covariances. These are used to update the Wishart
priors, which then generate a new Gaussian prior distribu-
tion over W,,U. A similar update is done to the Dirichlet
distribution over the types. The process iterates until con-
vergence. We describe this process in detail in Appendix A.

Now, we consider the problem of finding a good struc-
ture. We focus on the problem of discovering the struc-
ture of the subutility functions within the clusters, and as-
sume the number of clusters is given. (Our techniques eas-

ily extend to the more standard problem of discovering the
number of clusters.) We apply Bayesian model selection to
this task. More precisely, we define a discrete variable §
whose states s correspond to possible models, i.e., possible
decompositions of the subutilities in the different clusters;
we encode our uncertainty about S with the probability dis-
tribution P(s). For each model s, we define a continuous
vector-valued variable ¥;, whose instantiations corre-
spond to the possible parameters of the model. We encode
our uncertainty about ¥; with a probability density func-
tion P(y; | 5), as described above.

We score the candidate models by evaluating the
marginal likelihood of the data set D given the model
s [12]. That is, we want to compute

PO15) = [PO we,s)P(ws |)Ps)av.

The exact computation of the marginal likelihood is in-
tractable for models with hidden variables. We approx-
imate it using a scheme introduced by Cheeseman and
Stutz [5]. This approximation is based on the fact that
P(D | 5) can be computed efficiently for complete data. If
D, is any completion of the data set D, we have

JP(D,ys | s)dys
IP(DC)WS ls)d‘l’s

Letting {f; be either an MAP or an ML estimate for y;, we
can apply the BIC/MDL approximation to the numerator
and denominator, and get;

log P(D|s) ~logP(D.|s)+log P(D|s,s) —log P(D. | ¥s, s)-

P(D|s)=P(D.|s)

(In our case, the dimension of the complete data is the same
as the dimension of the actual data, so the model complex-
ity term cancels out.) We can compute the last two terms
in this estimate fairly efficiently by running our EM algo-
rithm from the previous section. Chickering and Hecker-
man [6] showed that this approximation is surprisingly ac-
curate, much more so than a direct use of BIC/MDL [6].

The first term, P(D, | 5), is the probability of a complete
data set, where the distribution of the continuous variables
in the network, conditioned on each instantiation of the dis-
crete variable Type, is a multivariate normal distribution.
Geiger and Heckerman [11] show that, in the case of com-
plete data, the marginal likelihood has a closed form that
decomposes (as usual) as a product over separate famillies
in the model. We omit the (straightforward) details.

Given a scoring function, we can apply standard tech-
niques for finding a high-scoring structure. We use a greedy
hill-climbing search with random restarts. Our search
space operators modify the subutility structure of each type
separately. An operator can add a variable to an existing
subutility function, delete a variable from a function, or in-
troduce a new subutility function with a single variable. We
evaluate each candidate successor structure by running EM
on it, and then scoring it using the Cheeseman-Stutz ap-
proximation to the Bayesian score.

S Using the Model for Utility Elicitation

There are many ways to use the model we learn to facilitate
utility elicitation and improve the quality of the results.

The most obvious use is simply to use the model as a
guide to the range of utility functions within the population.
In particular, our model incorporates a built-in measure of
confidence. When we assess a new user’s utility function,
we can immediately discover if he or she is an “outlier” —
a person with an atypical utility function. We can ask such
a person additional questions to make sure that there was
no error in the process.

A somewhat deeper use of the model, along the same
lines, is for smoothing the results of the utility elicitation
process for a particular individual based on trends in the
population as a whole. Given the amount of noise in the
utility elicitation process, smoothing of this type is likely
to be very useful in getting robust utility estimates.

We can also use the model in a much more funda-
mental way to change the entire utility elicitation process.
For (conditionally) additive decompositions, Keeney and
Raiffa [15] describe a utility elicitation procedure which
exploits the structure to reduce the number of questions
asked. A separate scale is established for every utility func-
tion component and the user is asked a series of questions
about its parameters. At the end, a new set of assessments
must be made to discover the scaling constants. This pro-
cedure has become a gold standard in many applications.

This method cannot take advantage of the more general-
ized factorizations allowed by our algorithm. We propose
an alternative procedure which is general enough to han-
dle all factorizations. When we assess the utility function
of a new user, we only need to ask as many questions as
the number of parameters in our model. The simplest way
to choose the outcomes to assess is to convert the projec-
tion matrix to the reduced row echelon form and discard
the outcomes corresponding to the rows consisting entirely
of zeros. Once the values of all the subutility functions are
known, we can compute the utility values for the remaining
outcomes. It would be good practice to double check that
the chosen decomposition really matches the new user’s
utility function structure by asking a few more “redundant”
questions and comparing the answers with those predicted
by the function we had computed.

This procedure can also be modified to utilize the model
in a more principled way. We can view the utilities elicited
for different outcomes as evidence in the distribution de-
fined by the model. We can then use standard probabilistic
inference to compute the distribution over the user’s subu-
tility functions. The more utilities we elicit, the more ev-
idence we have, the more certain we are about the actual
value of the user’s subutility functions. We can apply tech-
niques such as conditional mutual information or variance
reduction to decide, at each point in time, which utility elic-
itation question is likely to be the most informative about
the subutility variables. We can also make principled deci-

WOOOO

u(X) = ufK) + ufD) + (L) + ufF) + ufT)

®e-O6O

wX)=ufK)+ a(DL)+ ufF) + u T)

Cluster 1 ® @ @ @—@

u(X) =u(K)+u(T +uiD)+ufLF)

oz ® @

u(X) =z oK)+ u T+ u/DL)+ w(LF)

RO owers ®D-O-D-®

u(X) =u{KDL)+ u{LF.T) o(X) =9 (K.T) + ulT.D) + w(D.L) + u(L.F)

() T ®)

Figure 1: Best decomposition for Visual Analog Scale (a)
and Standard Gamble (b).

sions on when to stop the elicitation process by considering
our uncertainty about these variables.

Finally, we can use probabilistic models of the utility
function as the basis for a more targeted process of utility
elicitation. In a given decision making task, the utilities
of different outcomes typically influence the decision, and
the resulting expected utility, to radically different extents.
Most simply, some outcomes may have very low probabil-
ity in the current setting, so their utility is largely irrelevant.
Having a distribution over the utility functions in the pop-
ulation, we can compute the value of information of every
elicitation question; we can then focus our efforts on those
that have the highest impact on our actual decision [4]).

6 Experimental Results

We tested our approach on both real and synthetically gen-
erated data.

Our primary dataset consists of utility functions elicited
in a prenatal diagnosis study performed by [17]. All study
subjects were recruited from the University of Califor-
nia at San Francisco (UCSF) Prenatal Diagnosis Center.
Study subjects were recruited from a counseling session for
women who have not yet decided which prenatal diagnos-
tic test to undergo, or, in some cases, whether to undergo
prenatal diagnosis at all.

Out of 70 subjects we selected 51 who completed the
entire interview, which involved assessing utilities for 22
outcomes using two elicitation methods: standard gamble
(SG) and visual analog scale (VAS). These two methods
are known to produce very different utility values, thus we
treated the two sets of utilities as two distinct databases.
We treated the values of all the outcomes the women were
not asked about as missing.

We searched the space of 1-, 2- and 3-cluster models.
The best models we learned for our two databases were in
both cases 3-cluster models. They are presented in Fig-
ure 1. The nodes correspond to utility attributes in our
domain: testing (T), Down’s status (D), pregnancy loss
(L), knowledge (K) and future pregnancy (F). Additive
and conditional additive independence corresponds to ver-
tex separation. While the size of the database does not al-
low us to treat our models as representing the true structure

&

Log kelihood of the test data

0 ki S IcTaster-stroctused-nan) -----
il Ichuster-structared-run2 -——

sok/ 2clusters-structured ==~ J
i 2chsters-additive/stuctured-ran) ----
: 2chusters-additive/stractured-ma2 - |

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Nomber of samples

Figure 2: Learning curves for several models.

of the utility functions in the population, some of the corre-
lations found are very interesting. For example, the corre-
lation between the utilities for pregnancy loss and utilities
for Down'’s status and future pregnancy are highly intuitive.

We note that, in both cases, structures having multiple
clusters received substantially higher scores than structures
having a single cluster. Furthermore, structures where the
different clusters had different decompositions scored more
highly than structures where all clusters used the same de-
composition. This supports our hypothesis that different
subpopulations exist, and have different decompositions.

We also tested our algorithm on synthetic data. In our
artificial domain, we had 3 utility attributes, one ternary
and two binary, and 12 outcomes. We had three ba-
sic structures: fully additive; structured, in which u(o) =
ui(X1,X5) + u2(X2,X3); and fully connected (no indepen-
dencies). We generated 10-20 distributions for each struc-
ture, using different parameters.

In one cluster tests, we were always able to recover
the structure of the original distribution. For the addi-
tive model, the correct structure was chosen after seeing
at most 2 data points. (This result was to be expected given
the well-known bias towards simpler structures in Bayesian
learning.) For the structured model, the number of samples
needed ranged from 100 to 750. For the fully connected
model, we needed 200-500 samples.

In two-cluster tests, small amounts of data (10-100 sam-
ples) always resulted in a model with one fully connected
and one fully additive structure, regardless of the underly-
ing distribution. Given more data (1000-5000), we were
able to learn either the correct structure or one differing by
only one variable’s presence or absence in a subutility func-
tion. We obtained these results for models with the same as
well as with differing decompositions in the different clus-
ters.

We also tested our algorithm as a density estimator. For
these tests, we used a domain with 4 attributes, one ternary
and three binary. We had two structures: one fully ad-
ditive and one structured in which u(o) = u1(X),X2) +
uz(X2,X3) +u3(X2,Xs). We created several 1- and 2-cluster
models, with the same decomposition in different clusters

036

029 N " N s
100 200 300 400 500 600 700 800 900 1000
Number of samples

Figure 3: Least-squares projection vs. MAP projection

in some models and different decompositions in other mod-
els. The learning curve tests are presented in Figure 2. As
the number of samples grows, the learned parameters gen-
erally seem to converge to the generating distribution.

Finally, we tested the smoothing effect of using param-
eter priors in our algorithm. After learning the parame-
ters of the model (using the structure our data was gener-
ated from), we computed the values of the weight vector
w, using least-squares projection and MAP projection (as
described in Section 3) for the samples in our test set. We
compared these values to the true weights w, used to gen-
erate these samples. Figure 3 shows the results on 1- (solid
lines) and 2-cluster (dotted lines) structured models. The
upper curve in both cases corresponds to the least-squares
projection, the lower to MAP projection. The error for
MAP projection is not only lower, it also decreases more
rapidly.

7 Conclusion and Extensions

This paper introduces a new approach to acquiring and us-
ing preference information. Treating utilities as random
variables allows us to deal in a principled way with the un-
certainty inherent in utility assessments. It also helps us
utilize any prior knowledge we may have.

We have presented an algorithm for learning a proba-
bilistic model of the utility functions in a population of
users. Our approach uses Bayesian learning techniques,
and utilizes some of the same principles that have been used
successfully in structure search for probabilistic models.

Our approach allows us to discover the factorization
structure of the utility functions appropriate for a given do-
main. It accommodates a wide range of possible factoriza-
tions, including those corresponding to additive, condition-
ally additive, and generalized additive independence.

Our approach is significantly more expressive than the
naive linear-regression approach in several respects. First,
it allows more general notions than simple additive inde-
pendence; these are far more realistic assumption in many
domains. Second, it explicitly accounts for different clus-
ters of users that may use different decompositions. Indeed,

our approach discovers interesting structure in the prenatal
diagnosis domain of [17]), where the traditional linear re-
gression model failed to do so.

The statistical learning perspective also has other bene-
fits. By learning a statistical model of utilities in the popu-
lation, we are able to associate a “confidence” in our assess-
ment of an individual’s utility: if it is extremely unlikely
given our model, perhaps fatigue or some other source of
noise interfered with the elicitation process. We can also
use the model to “smooth” our estimates in a user’s utility
function, reducing the effects of noise. Finally and most
importantly, we can use this statistical model to substan-
tially ease the elicitation process (see [4]).

There are several interesting extensions of this line of
work that we would like to pursue. So far, most work (in-
cluding ours) has focused on notions of independence at the
level of variables. In probabilistic settings, this notion has
been refined to that of context-specific independence [3],
which allows independence of two variables X and Y in
the context of a particular value z of a third variable Z, but
not in the context of a value 2’ for Z. An analogous no-
tion can also be defined for utilities. We hope to extend
our approach to handle these more refined factorizations of
utility functions. In another extension, we hope to capture
relations between utility variables and other variables. For
example, it has been observed that people who have expe-
rienced an outcome tend to assign it a higher utility value
than those for whom the outcome is imaginary [18)]. This
type of correlation can be represented very naturally as a
dependence in our probabilistic model; we hope to extend
our approach to handle this type of situation.

Acknowledgments We would like to thank Ron Parr,
Xaver Boyen and Joseph Norman for many useful discus-
sions and Miriam Kuppermann for allowing us to use her
data for the prenatal testing domain. We are also grateful
to Uri Lerner for his help in building the inference code
for Gaussians. This research was supported by ARO un-
der the MURI program “Integrated Approach to Intelligent
Systems”, grant number DAAH04-96-1-0341 and by ONR

contract N66001-97-C-8554 under DARPA’s HPKB pro-
gram.

References

(1] F. Bacchus and A. Grove. Graphical models for preference
and utility. In Proc. UAI-95, pages 3-10, 1995.

[2] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, New York, NY, 1995.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In
Proc. UAI-96, pages 115-123, 1996.

[4] U. Chajewska, D. Koller, and R. Parr. Making rational deci-
sions using adaptive utility elicitation. In Proc. AAAI-2000,
2000. to appear.

{5] P. Cheeseman and J. Stutz. Bayesian classification (au-
toclass): Theory and results. In Advances in Knowledge

Discovery and Data Mining, pages 153-180. AAAI Press.
1995.

[6] D. M. Chickering and D. Heckerman. Efficient approxi-
mations for the marginal likelihood of bayesian networks
with hidden variables. Technical Report MSR-TR-96-08,
Microsoft Research, 1996.

{7} M. DeGroot. Optimal Statistical Decisions. McGraw-Hill,
New York, NY, 1970.

[8] A.Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the
Royal Statistical Society, B 39:1-38, 1977.

[9] D. G. Fromberg and R. L. Kane. Methodology for mea-
suring health-state preferences—i: Measurement strategies.
Journal of Clinical Epidemiology, 42(4):345-354, 1989.

[10] D. G. Fryback, E. J. Dasback, R. Klein, B. E. K. Klein,
N. Dom, K. Peterson, and P. A. Martin. The beaver dam
health outcomes study: Initial catalog of health-state quality
factors. Medical Decision Making, 13(2):89-102, 1993.

[11] D. Geiger and D. Heckerman. Learning gaussian networks.
In Proc. UAI-94, pages 235-243, 1994.

[12] D. Heckerman. A tutorial on learning bayesian net-
works. Technical Report MSR-TR-95-06, Microsoft Re-
search, 1996.

[13] R. A. Howard and J. E. Matheson. Influence diagrams.
In The Principles and Applications of Decision Analysis.
Strategic Decisions Group, 1984.

[14] F. Jensen, F. V. Jensen, and S. L. Dittmer. From influence
diagrams to junction trees. In Proc. UAI-94, 1994.

[15) R.L.Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Tradeoffs. John Wiley & Sons,
Inc., 1976.

[16] M. Kuppermann, 1998. personal communication.

[17] M. Kuppermann, S. Shiboski, D. Feeny, E. P. Elkin, and
A. E. Washington. Can preference scores for discrete states
be used to derive preference scores for an entire path of
events? Medical Decision Making, 17(1):42-55, Jan-Mar
1997.

[18] L. A. Lenert, J. R. Treadwell, and C. E. Schwartz. Asso-
ciations between health status and utilities implications for
policy. Medical Care, 37(5):479-489, 1999,

[19] G. Strang. Linear Algebra and Its Applications. Academic
Press, 1980.

[20] J. A. Tatman and R. D. Shachter. Dynamic programming
and influence diagrams. IEEE Transactions on Systems,
Man and Cybernetics, 20(2):365-379, 1990.

[21] J. von Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, Princeton,
N.J., 2nd edition, 1947.

A EM Computation

A Normal-Wishart prior defines a distribution over the
mean and covariance matrix of a Normal distribution. It
is parameterized by: a precision matrix R;; a number
B: > m, — 1; a mean vector A;; and a number v; > 0. Es-
sentially, R, and B, define a Wishart distribution w(R,,B;)
over m, X m; matrices Q;. The conditional distribution of I8
given Q; is a Gaussian with mean A, and covariance v, Q;” 1

"

The conditional distribution of vectors y given g, and Q;
sampled from this distribution is a Gaussian with mean g,
and covariance v,Q; .

The Normal-Wishart distribution is conjugate to the
Gaussian distribution. In other words, if we have a
Normal-Wishart prior (R?,?,A%,v0), and we observe vec-
tors y[1],...,y[€] from the associated Gaussian, then the
posterior distribution over the parameters is also Normal-
Wishart, with the following update rule:

1 {

y o= Syl 3)
L4

v+ ey

A' - V?+A€ Ty (4)

v, = V¢))
{

S = YOU-noL-9T (6)
j=1

R = R+S+ vit M- -9 @

’ d YA d

B = BY+¢ (8)

In our setting, we assume that the parameters g,,%; of
P(W, | t) are distributed Normal-Wishart with parameters
(R0,B0,A0,v0). We also assume that the variance o7 as-
sociated with all of the variables U, is distributed one-
dimensional Wishart with parameters p?, 10 and n°. p;,
v, and 1), correspond to R;, B, and v, in the distribution over
W, and their update rules are analogous to update rules 7,
8 and 5 respectively.

To do inference with this model, we need to marginalize
out the parameter prior and obtain a distribution over the
domain variables only. Given a Normal-Wishart parameter
distribution (Ry,B;,A,,V;), the distribution over W, given ¢
is an n dimensional ¢ distribution, which can be approxi-
mated using a multivariate Gaussian. For the type-specific
distributions, we get:

b= M
ve+1
= —2T R
& Ve (B —m—1) '
For the variance 07 we set
e+ 1
= T _p,.
! n:-(Yr—2)p'

The marginalization for a Dirichlet distribution over the
type, with hyperparameters 0, is the standard one: 6; =
/(X 0). ,

When applying EM to our model, the parameters to be
estimated are 6, 1,2, and o? for every ¢. The hidden vari-
ables are T and W;. In order to complete the data, we
must compute P(T[j], W,[/] | u[j],params). We marginal-
ize the parameter prior, as we just described. The result is

a Gaussian distribution P(W,,U | t). For each ¢, we com-
pute P(W; | ¢,u[j]) and the marginal P(u[j] | #). We also
compute the posterior probability of the different types as
P(t | u[j]) =< P(z) - P(u[j] | 7).

Using these probabilities, we can easily compute the (ex-
pected) sufficient statistics required for the update of our
various parameter priors. For the Dirichlet, we merely need
the expected count N(t) = ¥ P(z | u[j]). For the various
type specific Gaussians, we must compute the expected
value of A; and §;. Intuitively, we have to take the expec-
tation over uncountably many “completed” data cases — a
continuum of possible completions for each j. Fortunately,
this turns out to be easy. The key is that the posterior dis-
tribution over W,[j] given is a multivariate Gaussian with
mean ;] and covariance ;[j]. Let m;[j] denote P(¢ | u[/]);
intuitively m,[j] is the extent to which the jth sample be-
longs to type ¢, and therefore the extent to which it influ-
ences the estimate of its parameters. It is straightforward to
verify that

[4
£ = Ent[f]
j=1
1 {
yo = Zyzﬂt[f]l’-:[f]
j=1
{
5 = Zf’m ([= 70) L] = 907 + Z:[0)

Finally, we must compute the expected empirical vari-
ance §, needed to update p, and in turn 6>. Simple linear
algebra shows that, if W, is distributed Gaussian with mean
(7] and variance Z[j], then U* = AW, is distributed
Gaussian with mean A,,[j] and variance Y;[j] = A, % [j]AT .
Thus, we get that

{

5§ = Zlm[j]Z(Tr(o,O)[jH((Axu,[j])o—uo)z)
j= [
and

0
—_ 0, = 'ﬂ;nf .
A ey, ;j=

£

1nr[j]((Arm[j])o—ao)2-

Essentially, the empirical variance has components for
different data cases j (which determines P(W,[j] | 1)), and
outcomes o. The contribution for a type ¢ is weighted by its
probability. For each j and o, there is a contribution for the
difference between the mean of U and the observed utility
for outcome o, and a contribution for the inherent variance
of U;.

We can now use these expected sufficient statistics in
place of the exact sufficient statistics in Equations (4), (5),
(7) and (8). This gives us new estimates of the posterior
over the parameters relative to the completed data. We
then marginalize the posterior to induce new parameters,
and continue.

